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Abstract In a spliced image, areas from different origins contain different noise features,
which may be exploited as evidence for forgery detection. In this paper, we propose a noise
level evaluation method for digital photos, and use the method to detect image splicing. Unlike
most noise-based forensic techniques in which an AWGN model is assumed, the noise
distribution used in the present work is intensity-dependent. This model can be described with
a noise level function (NLF) that better fits the actual noise characteristics. NLF reveals
variation in the standard deviation of noise with respect to image intensity. In contrast to
denoising problems, noise in forensic applications is generally weak and content-related, and
estimation of noise characteristics must be done in small areas. By exploring the relationship
between NLF and the camera response function (CRF), we fit the NLF curve under the CRF
constraints. We then formulate a Bayesian maximum a posteriori (MAP) framework to
optimize the NLF estimation, and develop a method for image splicing detection according
to noise level inconsistency in image blocks taking from different origins. Experimental results
are presented to show effectiveness of the proposed method.
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1 Introduction

Digital image forensics is a technique of photo source identification and integrity authentica-
tion. This paper considers the problem of detecting image splicing without any prior knowl-
edge. Existing methods of image splicing detection generally fall into two categories: 1)
methods based on image fingerprints such as re-sampling traces [23], double JPEG compres-
sion [5], contrast enhancement [24], median filtering [31], etc., and 2) methods based on
constraints of certain image attributes such as copy-move [10], shadow matte [14], planar
homography [32] and perspective features [30]. The noise feature as an intrinsic fingerprint of
a photo provides a useful clue for image forensics. The method proposed in this paper belongs
to the second category.

1.1 Related Works

Every image acquired by a camera contains noise that can be classified into two types: photo-
response non-uniformity noise (PRNU) and random noise. PRNU is caused by slight errors in
sensitivity of the camera’s photoelectrical sensors. It has a roughly fixed pattern among
pictures taken by the same model of camera. Since this type of non-uniformity is inherent in
the camera, it can be used as a fingerprint for camera identification. Lukas et al. [16] developed
a method to verify the pattern of noise distribution. They determined the reference noise
pattern of a camera by averaging noise extracted from several images. Given an image, they
obtained the pattern noise from the image using a smoothing filter, and identified the camera
model by comparing with candidate reference patterns. The same approach was also used to
develop a method of photo integrity detection [1]. A major limitation of the PRNU-based
methods is that it relies on prior knowledge about the camera model, and requires a large
number of training images taken by the registered equipment. Furthermore, if a spliced image
is composed of two origins taken by the same camera, the method will fail.

Another type of noise, i.e., random noise, include quantum effects, thermal fluctuations and
dark current leakage. Although hardware manufacturers have been trying hard to suppress
random noise, noise is inevitable. Estimating the noise level from a single image is a
significant task in many applications, in particular, image denoising. Most of earlier ap-
proaches assumed the additive white Gaussian noise (AWGN) model [4], and described the
noise level with its variance or standard deviation. However, the AWGN conjecture may not
hold for real-life digital photographs because the actual CMOS/CCD sensor noise is strongly
dependent on the light intensity. Based on this consideration, Liu et al. [12] defined a noise
level function (NLF) with respect to image intensity. They collected a sample set representing
spatial average and variation, and found the lower envelope of the samples. A Bayesian
framework was used to optimize the fitting. The method was later extended to a noise removal
application [13]. However, the shape of the NLF curve was not well constrained in the
Bayesian process. Thus, the incomplete homogenous samples may affect the accuracy of
estimation. Yang et al. [27] concerned the problem of insufficient homogenous sample blocks
in noise level estimation. They estimated NLF using sparse representation techniques via
dictionary recovery. To improve the fitting approximation to the ground-truth functions, a
sparse recovery model extracted in discrete cosine domain was further developed [28].
However, a reliable dictionary needed to be trained before estimation. Liu et al. [15] developed
a method to estimate signal dependent noise parameters based on the mean and variance of the
selected weak textured patches. In their method, the number of noise parameters was set to 3,
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and the influence of camera response function was neglected. In the preliminary version of our
work [29], the strong relationship between NLF and the camera response function was
revealed and NLF can be estimated from relative incomplete samples. For noise inconsistency
forensic applications, Mahdian et al. [18] proposed a noise variance estimator based on the
median absolute deviation (MAD) in the high-pass Haar wavelet subband, and applied it into
image splicing detections. Based on the observation of projection kurtosis concentration in
band-pass domain [22], Lyu et al. [17] proposed a blind noise estimation approach to evaluate
the noise level using projection kurtosis, and designed a splicing detection method based on
blind local variance estimation. However, the blind noise estimation method may not be
suitable to relatively complex noise models, and for different intensities in an untampered
photo, the noise variance may not be close enough. Kobayashi et al. [9] proposed a stationary-
scene video forgery detection method based on inconsistency in NLF. They identified inserted
pixels from another video source by using maximum a posteriori (MAP) estimation for the
noise model when NLF of the region was inconsistent with the rest of the video. However, this
method cannot be applied to single image forgery detection since NLF was collected by
averaging static-scene video frames in [9], rather than estimated from a single image.

1.2 Our contributions

As mentioned in the above, the method proposed in [13] was applicable to suppressing strong
noise in images. In image forensic applications, however, the goal is to evaluate the noise level,
no matter high or normal, of the whole images or just in local image blocks. Actually the
forged region may be small, that is, the collected sample set available for estimation may be
incomplete. In this paper, we consider noise level evaluation from images with moderate noise
level using incomplete sample sets. To do so, we first model the noise level based on the
relationship between NLF and the corresponding camera response function (CRF), and divide
the image into edge and non-edge regions. Since samples taken from non-edge regions are
usually inadequate, the NLF profile is constrained by the shape of CRF estimated from the
edge regions. A Bayesian MAP framework is used to estimate NLF. The proposed approach of
NLF estimation is then applied to detect image splicing. The idea is that, if an image region
comes from a different source, there is likely a trace of noise level inconsistency due to
distinguishable source camera models or different camera settings.

The rest of the paper is organized as follows. Section 2 discusses the relationship between
CRF and NLF. Sections 3 and 4 present the proposed methods for NLF estimation and splicing
detection, respectively. Section 5 shows effectiveness of the method, and Section 6 concludes
the paper.

2 Noise Level Function Modeling

In this section, we explore the relationship between CRF and the corresponding NLF. An NLF
model is then established, which will be used to estimate NLF in Section 3.

2.1 Camera response function

In many image processing algorithms, the recorded image intensity is assumed to be
proportional to the scene radiance recorded by the camera sensor. However it is
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generally not the case. The camera response function (also termed the radiometric
response function) f (·) is defined to describe the non-linear mapping between the
scene radiance R and the measured intensity I in an image:

I ¼ f Rð Þ ð1Þ
Assuming f is continuous and monotonic and neglecting errors due to

discretization, the inverse response function, R = g(I), can be obtained. Since only
the observed output intensity, I, is available, most CRF estimators attempt to find the
inverse CRF g instead of f.

2.2 Noise level function

As stated in [26], noise produced in a digital camera is not simply additive, but
strongly dependent on the image intensity. To describe the relationship between noise
and image intensity, a noise level function (NLF) is defined as variation of the
standard deviation of noise with respect to image intensity [13]. Figure 1 illustrates
the imaging process that transforms radiance photons into intensity bits. Scene radi-
ance passes through the lens and is contaminated by several kinds of noise prior to
the transformation. Let R0, R and I donote noise-free scene radiance, noisy radiance
and observed intensity respectively. Intensity of the noise-free image is denoted as I0,
which cannot be obtained from a single image. There are four main types of noise
[7]: photon shot noise NPS, dark current noise NDC, read-out noise NRO, and quanti-
zation noise NQ. Neglecting the interference of camera filter array (CFA) sampling
and interpolation, the observed image itensity can be expressed as:

I ¼ f Rð Þ þ NQ ¼ f R0 þ NPS þ NDC þ NROð Þ þ NQ ð2Þ

where f(·) is CRF. By Taylor expansion, the first-order approximation is [25]:

I≈ f R0ð Þ þ f 0 R0ð Þ⋅ NPS þ NDC þ NROð Þ þ NQ ð3Þ
Assume that all noise sources are zero-mean and independent of each other, and their

standard deviations are σPS, σDC, σRO and σQ respectively. Variance of R and I can be written
as:

σR
2 ¼ σ2

PS þ σ2
DC þ σ2

RO ð4Þ

Noise-free scene 

 radiance R0 

CFA  

sampling 

Photon shot 

noise NPS

CFA  

interpolation

CRF 

mapping 

Read-out 

noise NRO

Dark current 

noise NDC

Quantization

noise NQ

Noisy image 

 radiance R
Observed image 

intensity I

Fig. 1 Imaging process in which radiance photons are transformed into intensity bits. The signal captured by
photoelectrical sensors is contaminated by shot noise, dark current noise and read-out noise in the process. After
non-linear mapping, the image irradiance is quantized to produce intensity bits
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σI
2≈ f 02 R0ð Þ⋅ σ2

PS þ σ2
DC þ σ2

RO

� �þ σ2
Q ð5Þ

σI
2≈ f 02 R0ð Þ⋅ R0σ

2
1 þ σ22

� � ð6Þ
where σ1

2 = σPS
2/R0 and σ2

2 = σDC
2 + σRO

2. Since NLF is a function of the noise-free
image intensity I0, and R0 = g(I0), Equation (6) can be rewritten as:

σI I0ð Þ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g I0ð Þσ2

1 þ σ2
2

q
=g

0
I0ð Þ ð7Þ

Now we have revealed the relationship between NLF σI and the inverse CRF g. Using (7),
NLF can be found from g, σ1 and σ2. The inverse CRF g depends on the camera model, and σ1
and σ2 are related to image capture parameters such as the sensitivity to light (i.e., ISO), shutter
speed and aperture, and to the camera specifications such as the sensor noise level. We model
NLF based on (7) for the following two reasons: 1) unlike the training-based models [12, 13,
27, 28], the parameters used here have physical meanings, and 2) estimation of NLF can well
be constrained by the shape of CRF, especially under a low noise condition. Therefore NLF
and CRF can be determined simultaneously.

3 Estimation of Noise Level Function

As described in Section 2, NLF and CRF curves are strongly related. For estimating
the noise level, we usually face two conditions: we have known the specific CRF or
camera model before, or we do not have any prior knowledge of CRF. For the first
condition, we can estimate the shape of NLF more accurately using (7). However, the
second condition is more common, since it’s usually hard to obtain the CRF data in
advance. Thus, in this paper, we focus on how to estimate the most probable NLF
and CRF simultaneously using Bayesian approach. According to [11, 13], NLF and
CRF can be estimated from non-edge regions and edge regions, respectively. Both
methods motivate us to develop a method to optimize NLF and CRF simultaneously.
In the first step of the proposed method, the image is divided into non-edge and edge
regions using edge extraction techniques. For non-edge regions, execute mean-shift
segmentation and calculate the mean of smoothed segments and standard deviation of
noise residual, respectively, which are collected as NLF estimation sample set Ω1.
Then, define a metric D1 to fit the lower envelope of the collected Ω1. Next, for edge
regions, collect CRF estimation sample set Ω2 by seeking the edge patches containing
two regions with distinct but uniform colors, as well as define a metric D2 to
transform edge histograms into linear distributions. Last, the NLF is optimized using
a MAP criterion after setting up a likelihood model with combination of D1 and D2.
Figure 2 is a block diagram of the proposed NLF estimation method. More details are
introduced in the following subsections.

3.1 Sample sets for NLF estimation and definition of distance metrics

We first use the Canny operator and three-pixel dilation to divide the image I into
two groups of regions: edge and non-edge. Assume these regions are independent of
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each other. We group non-edge pixels to form non-overlapping regions based on
spatial and intensity similarities using a mean-shift segmentation method as described
in [3]. We apply a de-noising filter, denoted d(·), to produce a smoothed version of
the image, ID. Here, d(·) is a wavelet-based adaptive filter [21], which has been
shown to be effective for images contaminated by common noise [16]. We define a
noise residual N as the difference between I and ID. Then ID and N are grouped into
segments simultaneously according to the mean-shift segmentation coordinates. Let Ii,
IDi and Ni be the i-th segments in I, ID and N, and ^Ii and ^ói are the average of IDi and
standard deviation of Ni respectively. For each segment, we get a sample pair
consisting of ^Ii and ^ói. If a segment Ni is small enough or ^ói is larger than the global
standard deviation of N, we consider it as improper and discard it. With all proper
segments, we can get a sample set {(^Ii and ^ói)} for each color channel, i.e., red, green
and blue. Compared to [13], instead of spatial average and variation from each Ii, we
can obtain more precise samples for the fitting by collecting samples of ^Ii and ^ói from
IDi and Ni respectively.

However, since no ideal filter can perfectly separate the image content from noise, we
cannot estimate the noise level of an image directly from {(^Ii and ^ói)}. There are two
types of errors in N: image details mistreated as noise, and noise mistreated as image
details. Generally, probability of the first type of errors is larger than the second. For this
reason, we calculate differences between the individual samples and the lower envelope of
all samples, and use the sum of these differences as a measure of the difference between
the ground-truth NLF and that of the collected samples. To obtain the lower envelope of
{(^Ii and ^ói)} for each color channel, we discretize the entire range of intensity [0, 1] into
equal intervals {[nh, (n + 1)h]} with n = 0, 1,. .., (1/h-1), where h is the interval and is
set to 1/64 in the present work. For any subset Λn = {(^Ii and ^ói)| nh≤ ^Ii≤ (n + 1)h}, we
find a pair (^In, ^ón) with the minimum ^ón=minΛn

^ói. By traversing all possible Λn, we can
get a sample set {(^Ii, ^ón)| 0 ≤ n ≤ 1/h-1} from each channel. We then combine all sets
collected from all channels to form a set, denoted Ω1. Suppose the ground truth NLF is

NLF σI
*

Set up likelihood model

Image I

Extract edges

Fit lower envelope of noise 

standard deviation samples

Transform edge histograms 
into linear distributions

Non-edge regions Edge regions

Metric D1 Metric D2

Prior model 
Bayesian MAP

Fig. 2 Block diagram of the
proposed NLF estimation method

12462 Multimed Tools Appl (2017) 76:12457–12479



known, denoted σI. We use the sum of square error to measure the difference between σI
and the samples sn(^)^ón in Ω1. Denote this difference metric as D1:

D1 σI;Ω1ð Þ ¼
X

k¼R;G;B

X1=h−1
n¼0

σIk Î nk
� �

−σ̂nk
� �2 ð8Þ

where the subscript k is used to distinguish components in different color channels.
Following the model derived from Equation (7), Equation (8) can be rewritten as

D1 g;σ1;σ2;Ω1ð Þ ¼
X

k¼R;G;B

X1=h−1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Înk
� �

σ2
1k þ σ2

2k

q
g0 Ink
� � −σ̂nk

2
4

3
5
2

ð9Þ

Taking a color image sized 512 × 512 as shown in Fig. 3(a), we explain the process of
collecting {(^InG,

^ónG)} from the non-edge regions step by step as illustrated in Fig. 3(b)-(e).
From Fig. 3(e), we cannot guarantee that all samples ^In cover the full range of image
intensities, especially for small sized images. As stated in Section 2, NLF strongly depends
on the shape of CRF. Therefore, we use an edge-based inverse CRF estimation method
proposed in [11] to restrict the profile of NLF. Suppose a small patch in the image containing
two regions of slowly varying intensity, denoted R1 and R2. Let

^R1 and
^R2 be the mean color of

R1 and R2 respectively. In addition, assume that a pixel ^RE is on the boundary between R1 and
R2. Here

^R1,
^R2 and

^RE all have three elements representing intensities in the RGB channels
respectively. Radiance of the boundary pixel should be a linear combination of the pixels in R1
and R2 before nonlinear CRF mapping [11]. This property is applied to estimate the inverse
CRF g. We now seek a function g to map ^R1,

^R2 and
^RE back to the linear relationship in the

color spaces. Let the distance from g(^RE) to line g(^R1g(
^R2)be H, which can be computed as:

H ¼ g R̂1

� �
−g R̂2

� �� �� g R̂E

� �
−g R̂2

� �� �		 		
g R̂1

� �
−g R̂2

� �		 		 ð10Þ

where | · | is the Euclidean norm (L2-norm) of a vector and × denote a cross product of two
vectors. After scanning all patches along the extracted edges, we select the patches containing
two regions with distinct but uniform colors as valid sample patches for estimation. A close-up
view of a valid patch and a complete view of all selected edge patches are shown in Fig. 3(g)
and (h) respectively. Suppose the total number of valid patches isM, and a subscriptm is added
to indicate the m-th patch, then we get a sample set {(^R1m,

^R2m,
^REm} , denoted Ω2. Given an

inverse CRF g, we define a total distance metric D2 to measure the linearity mapping by g:

D2 g;Ω2ð Þ ¼
X

Ω2
H2

m ð11Þ

Different from [11], we define D2 as the sum of squares instead of direct accu-
mulation to make the definitions of D1 and D2 consistent. Although techniques for
CRF estimation are available, we apply an edge-based method for the following
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reason: Image edge regions and non-edge regions can be treated as independent
components, and this merit can greatly facilitate the construction of a likelihood
model in the next step.

So far we have explained how the two independent sample sets Ω1 and Ω2 can be collected
from non-edge regions and edge regions. In addition, two distance metrics D1 and D2 are
defined as measures of differences between the samples and the estimated results. In the next
step, D1 and D2 will be minimized simultaneously using Bayesian MAP inference.

(c)(b)(a)

(e)(d)

(h)(g)(f)

Fig. 3 Sample set collection for NLF estimation. (a) A 512 × 512 image cropped from a photo taken by Nikon
D300 with shutter speed 1/15 s and ISO 1600. (b) Residual noise extracted using the filter proposed in [21]. (c)
Mean-shift segmented image in which each segment is represented by the mean color of the region. (d) A sample
set {(^Ii , ^σi )} in the green channel, collected by computing the mean of smoothed segments and standard
deviation of noise residual. (e) Lower envelope of (d). (f) Edge map extracted from (a). (g) A close-up view of a
valid edge patch, in which the blending edge pixel ^RE is centrally located. (h) A complete view of all selected
patch samples labeled by yellow boxes
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3.2 NLF estimation based on Bayesian MAP

To estimate NLF from insufficient sample sets Ω1 and Ω2, we use a Bayesian maximum MAP
inference. Before maximizing the a posteriori probability, a priori and likelihood models
should be set up.

Suppose g, σ1 and σ2 are independent of each other. Based on Equation (7), the a
priori model of NLF can be simplified as:

P σIð Þ ¼ P g;σ1;σ2ð Þ ¼ P gð Þ P σ1ð Þ P σ2ð Þ ð12Þ
where P(g) is the a priori probability of inverse CRF. P(σ1) and P(σ2) are a priori
probabilities of σ1 and σ2, supposed to obey the uniform distribution. Due to
sampling inadequacy, it is impossible to estimate g with superfluous parameters. To
use fewer coefficients to represent g as suggested in [6], any g can be concisely
represented as

g ¼ g0 þ
XJ

j¼1

α jg j ð13Þ

where g0 and gj (j = 1, 2,. .., J) are the mean vector and eigenvectors of 201 real-world
inverse CRF curves, respectively. All these vectors can be downloaded from the
database of real-world CRFs (DoRF) [6], which are derived from a principal compo-
nent analysis (PCA) on the observed CRF data. Equation (13) indicates that a limited
number of representation coefficients αj (j = 1, 2,. .., J) can represent g. Note that the
lengths of vectors g0 and gj are all 1024 in this model. Following [11], J is set to 5
and the a priori probability of g is formulated by a Gaussian mixture model which
can be trained from the PCA coefficients in the DoRF database.

The likelihood of σI is the occurrence probability of the observed sample sets Ω1

and Ω2 once the parameters for estimation are given. Since Ω1 and Ω2 can be
regarded as independent sets and the likelihood probability decreases monotonically
with the increase of D1 and D2, the likelihood function L(σI) is defined as a negative
joint bivariate exponential distribution:

L σIð Þ ¼ P Ω1;Ω2 g;σ1;σ2jð Þ
¼ P Ω1 g;σ1;σ2jð ÞP Ω2 gjð Þ
∝exp −λ1D1 g;σ1;σ2;Ω1ð Þ−λ2D2 g;Ω2ð Þ½ �

ð14Þ

where likelihood L is proportional to a product of two negative exponential functions
with respect to D1 and D2, respectively. The weights λ1 and λ2 control intensity of
the constraint on the shape of NLF, and are both set to 20 empirically in the present
work.

Now, based on the a priori and likelihood models, we solve the problem with
Bayesian MAP inference. In general, for a color image the three CRF curves
corresponding to the R, G, and B channels are different. However, since the differ-
ences are not large, we consider that the inverse CRFs of the three channels are the
same to make things easier. With this simplification, we can estimate all three NLFs
using 11 parameters: {(α1, … , α5, σ1R, σ2R, σ1G, σ2G, σ1B, σ2B)}. Taking logarithm
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of the a posteriori function, the Bayesian inference turns out to be a minimization
problem:

σI
* ¼ argmin

αl ;σ1k ;σ2kð Þf g
λ1D1 g;σ1;σ2;Ω1ð Þ þ λ2D2 g;Ω2ð Þ−log P gð Þð Þ½ �

¼ argmin
αl ;σ1k ;σ2kð Þf g

λ1

X
k¼RGB

X1=h−1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Înk
� �

σ21k þ σ2
2k

q
g0 Î nk
� � −σnk

2
4

3
5
2

þ λ2

XM
m¼1

g R̂1m
� �

−g R̂2m
� �� �� g R̂Em

� �
−g R̂2m

� �� �		 		
g R̂1m
� �

−g R̂2m
� �		 		

( )2

−log P gð Þð Þ

ð15Þ

To obtain the minimum of Equation (15), we seek local minimum using the non-
linear Levenberg–Marquardt-Fletcher algorithm [19] with 40 groups of different initial
values. To reduce computation complexity, the maximum number of iterations for
each group is limited to 200. Finally NLF is determined by selecting one group of
optimal values from all candidate minima followed by low-pass filtering to refine the
shape of NLF.

4 Image Splicing Detection

A spliced image is formed with two or more parts taken from different origins that
may contain inconsistent noise characteristics. In principle, we can separate the global
image into several local segments and estimate all their NLFs exhaustively using the
method presented in the previous section. However, the computational complexity is
relatively high, especially for some images with larger sizes. As a trade-off between
complexity and precision, we propose a suspicious region based splicing detection
method. To start with, we can manually select three or more than three suspicious
regions and one background from the image for detection. This manipulation is
feasible for the occasion that the number of images for detection is relatively small.
Once the number turns to be high, we suggest applying saliency detection method
such as [8] to locate suspicious regions automatically. Suppose we select S suspicious
regions, denoted SR1, SR2, …, SRS, as likely candidates for forgery identification and
a background region BG. Next, we estimate NLFs from the background BG and
candidate regions SR1, SR2, …, SRS respectively using the method described in
Section 3. Let σBG*, σSR1*, σSR2*, …, σSRS* denote the recovered NLFs from BG,
SR1, SR2, …, SRS respectively. Set σBG* as a reference pattern and define a factor CB-

Rs, s = 1, 2, …, S to measure the inconsistency between background and each salient
region:

CB−Rs ¼
X
k¼RGB

X1

I 0¼0

σSRsk
* I 0ð Þ−σBGk

* I 0ð Þ� �2
S ¼ 1; 2; :::; S ð16Þ

where the sum of squared errors of prediction (SSE) for all color channels is calculated to
measure the discrepancy. The maximum of CB-Rs, denoted CB-Rmax, indicates the most
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probable forgery region. To determine whether the block is spliced or not, we calculate the
ratio of CB-Rmax to the average of remaining CB-Rs, denoted CB-Rave, as:

η ¼ CB−Rmax=CB−Rave ð17Þ
where η is a forgery detector to evaluate deviation of the likely candidate from other regions.
When the ratio is smaller than a predefined threshold T, (which will be discussed in subsection
5.2) the image for detection can be grouped into noise consistency images. Otherwise, a forged
region is identified and the second maximum of CB-Rs is determined according to (17). More
splicing regions can be identified until the number of remaining CB-Rs equals two. Thus, we
can locate at most N-2 forged regions theoretically and N is usually set to 3, 4, or 5. However,
to improve the accuracy of spliced region detection, a boundary based object segmentation
method [2] is applied to generate a refined forgery detection map.

5 EXPERIMENTAL RESULTS

5.1 NLF estimation

To evaluate the proposed method, we compare the estimated NLF with the ground-truth NLF
curves both for synthetic and captured real photos.

First, we evaluate our method on images contaminated by artificial noise. To compare with
the existing NLF estimation methods, we use the same 17 synthetic test images as used in [13]
taking from the Berkeley image segmentation database [20]. According to (7), the ground truth
NLF can be generated by setting a specified inverse CRF function g and two noise parameters
σ1 and σ2. In this experiment, we select the 60th function in the CAVE database [6],
σ1G = σ1R = σ1B = 0.10, and σ2G = σ2R = σ2B = 0.02. Some synthesized noisy images for
testing are shown in Fig. 4(a)-(d) and their corresponding grayscale histograms are given in
Fig. 4(e)-(h). The histograms show that most pixels in Fig. 4(a) are distributed at both ends of

0
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0 100 200
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2000

0 100 200

0

500

1000

1500

0 100 200

0

1000

2000

0 100 200

(b) (c) (d)(a)

(e) (f) (g) (h)

Fig. 4 Synthesized noisy images and their corresponding grayscale histograms. (a)-(d): test images, and (e)-(h):
corresponding histograms of (a)-(d)
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the histogram. In other words, few samples can be found in the middle range of intensity for
estimation. In Fig. 4(b), the image intensity has a relatively narrow range, concentrated in the
middle part of the histogram. Obviously, it is challenging to estimate low-end and high-end
NLF curve from samples with intensity mainly in the middle range. Images in Fig. 4(c)-(d)
have relatively wide intensity ranges and few texture contents. Thus, enough samples can be
extracted to fit the whole NLF curves.

Fig. 5(a)-(d) are estimated results from the test images in Fig.4 (a)-(d) respectively. From
left to right, each column provides estimated NLFs (color solid lines), observed sample setsΩ1

(color dots) and the reference ground-truth NLFs (gray dashed lines) of red, green and blue
components, respectively. For comparison with the up-to-date methods, the results estimated
by the Bayesian inference based method [13] (black dotted lines), the sparse representation
based method [27] (cyan dash-dot lines) and DCT domain based method (yellow dash-dot
lines) [28] are also shown in Fig.5. As [15] assumes a noise model very different from [13, 28]
and ours, comparison with [15] on synthetic photos is not made in the experiments.

We observe that, for test images with wide range of intensity such as Fig.4 (c) and Fig.4 (d),
NLF estimates with all methods coincide with the ground-truth NLFs. However, for some images
with relatively narrow intensity range like Fig.4 (a) and Fig.4 (b), the proposed method and the
method of [28] outperform [13] because [13] assumes all samples are well distributed. If the
samples do not span a sufficient range, there must be notable deviation from the ground-truth.

We use root-mean-square error (RMSE) and infinity norm (L∞-norm) to measure the difference
between the estimated and reference NLFs. L∞-norm of a vector is the absolute maximum among
the elements. Table 1 compares error statistics of the proposed method with [13, 27]. Means and
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variances of the two metrics are given. From the table we observe that the proposed method has a
smaller statistical error between the estimates and the ground truth for synthesized images.

Next, we compare the NLF estimates with the ground-truth NLF curves from captured real
photos. Following [13], the reference ground-truth NLF is obtained by taking 30 photographs
of a stationary scene with the same camera and the same settings, and calculating a mean
image. We collect 21 groups of test photos as our dataset, shown in Fig. 6. The photos are
numbered consecutively from top left to bottom right, where 1–10 are captured with Nikon
D300, 11–16 Nikon D3100, 17–19 Canon EOS 400D, and 20–21 Sony A350. Photos are
saved either in RAW or fine JPEG formats, and cropped or down-sampled to 1024 × 1024 to
reduce computation complexity. Examples of the estimation results with the four cameras are
given in Fig. 7. The left column shows the test images, the other three columns give the
estimated NLFs (solid color lines), the observed sample sets Ω1 (dotted color lines) and the
reference ground-truth NLFs (dashed gray lines) of red, green and blue components, respec-
tively. From the depicted ground-truth NLFs, we observe that the noise standard deviation
exposes the strong relationship with respect to intensity. From another point of view, this
observation also demonstrates the reasonability of our assumed noise model.

For comparison with other recent methods, NLFs recovered by sparse presentation based
method [27] (dash-dotted cyan lines), DCT domain based method [28] (dash-dotted yellow
lines) and gradient-descent base method [15] (dotted black lines) are also shown in Fig. 7. We
observe that most NLF estimates are in good agreement with the ground-truth, and the proposed
method performs better than the method [15]. Note that the assumed noise model in [15] is very
different from ours. Deviation exists at the high intensity end in [15] due to the effect of neglecting
camera response functions. The main difference between [27, 28] and the present work is that, in
our case, NLFs of all channels can be estimated from the corresponding color samples, while in

Table 1 Error statistics of RMSE and L∞-norm between estimated NLF and ground truth

Error Metrics Proposed Liu et al. [13] Yang et al. [27]

mean variance mean variance mean variance

RMSE 0.0029 4.53×10−7 0.0048 1.09×10−5 0.0035 5.08×10−7

L∞-norm 0.0097 1.16×10−5 0.0110 1.44×10−4 0.0113 1.07×10−5

01 02 03 04 05 06 07

08 09 10 11 12 13 14

15 16 17 18 19 20 21

Fig. 6 Test scenes for evaluation of noise level function
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[27, 28], NLF is estimated from the green samples or gray intensity for all channels. Figure 7 shows
distinct differences between color channels in almost all test images.

The estimation result from the red component of test image No. 14 shows clear disagree-
ment with the ground-truth. This error may be caused by a large area of complicated texture in
the lower left part of the image. Figure 8 presents RMSE of all test images in all color
channels, indicating that the proposed method has a relative low statistical error between the
estimates and the ground truth.
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5.2 Detection of image splicing

We now apply the proposed method described in Section 4 to detect image splicing.
In most cases of image forgery, attractive objects are inserted into background photos.
We download some images with background and attractive objects from the internet,
and make forged photos using Adobe Photoshop. On the bottom row of Fig. 9 are

Fig. 9 Examples of splicing
detections. From top to bottom:
original photos used as
background, original photos from
which the inserted objects are
taken, and synthesized fake photos
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Fig. 10 Forgery detection results of Fig. 9(a): a salient regions extraction; b-d NLF estimates from all salient
regions and background in red, green and blue channels, respectively; e inconsistency metric of CB-Ri, and
candidate deviation evaluator η as indicated by the vertical axis on the right-side; f preliminary detection results; g
refined detection results based on [2]; and h detection result using the method of [22]
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spliced photos, with corresponding background pictures on the top row, and inserted
objects in the middle. The images are captured with different camera models using
different exposure and ISO settings, therefore have different noise levels.

The four spliced images in the bottom row of Fig. 9 are detected, with the results given in
Fig. 10, 11, 12 and 13. In each figure, (a) shows the selected suspicious regions, annotated SR1,
SR2 and SR3, where the number of suspicious regions is set to 3; (b) through (d) give estimated
NLFs from all saliency and background regions in the corresponding red, green and blue
channels, respectively. The inconsistency metric of each saliency region and background (viz.
CB-Ri, i = 1, 2, 3) and their corresponding candidate deviation evaluator η are calculated and
illustrated in (e). If η is larger than a predefined threshold T, which was set to 3 here, the
candidate saliency region is marked as spliced region. Sub-figures (f) and (g) in Fig. 10, 11, 12
and 13 provide our preliminary and refined detection results, with white regions indicating
forged areas. For comparison, (h) shows detection results obtained using another method [22]

Table 2 Detection rates on 100 forged and authentic photos with different thresholds

Detection rate Proposed Pan et al. [22]

T=2 T=2.5 T=3 T3.5= T=4

True detection rate (TDR) 0.90 0.87 0.85 0.81 0.72 0.84

False detection rate (FDR) 0.25 0.21 0.13 0.10 0.08 0.20

0 0.5 1
0

0.02

0.04

Intensity

S
ta

nd
ar

d 
D

ev
ia

tio
n

Red BG

SR
1

SR
2

SR
3

0 0.5 1
0

0.02

0.04

Intensity

S
ta

nd
ar

d 
D

ev
ia

tio
n

Green BG

SR
1

SR
2

SR
3

(c)(b)(a)

0 0.5 1
0

0.02

0.04

Intensity

S
ta

nd
ar

d 
D

ev
ia

tio
n

Blue BG

SR
1

SR
2

SR
3

0

1

2

CB-Ri

CB-R1 CB-R2 CB-R3 η
0

5

10

η

(f)(e)(d)

(h)(g)

Fig. 11 Forgery detection results of Fig. 9(b): a salient regions extraction; b-d NLF estimates from all salient
regions and background in red, green and blue channels, respectively; e inconsistency metric of CB-Ri, and
candidate deviation evaluator η as indicated by the vertical axis on the right-side; f preliminary detection results; g
refined detection results based on [2]; and h detection result using the method of [22]
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based on a kurtosis estimator for revealing noise variances inconsistency in DCT domain.
From the detection results, we observe that, for photos with low-texture background and high-
texture spliced region such as Fig. 9(a), (c) and (d), both methods can provide satisfactory
results. However, our method can provide better accuracy since a saliency segmentation
technique [2] is applied. Besides, for photos with high-texture background such as Fig.9 (b),
the method of [22] produce some false detection as shown in Fig.11 (h), while the proposed
method can accurately locate the spliced region as shown in Fig.11 (g).

To seek an optimal threshold T, we collect 100 authentic photos and make 100 forged
photos. We then study statistics of the true detection rates (TDR) and false detection rates
(FDR) with different thresholds from the forged and authentic photos. TDR is the percentage
of correctly identified forged regions that are indeed spliced, while FDR is the percentage of
falsely detected tampered regions that are actually authentic. Table 2 lists TDRs and FDRs
obtained using the proposed method with thresholds T = 2, 2.5, 3, 3.5 and 4, respectively. We
take a trade-off between high TDR and low FDR and recommend to use a threshold T = 3. In
this case, TDR =0.85 and FPR = 0.13, both considered acceptable. Besides, to compare the
detection rates of the proposed method with [22], the corresponding detection rates of [22] are
listed in the right column of Table 2. The table indicates that, with a proper threshold setting,
the proposed method has a higher true detection rate and a lower false detection rate.

Finally, we test our methods on some synthesized photos downloaded from an image
manipulation and contest website www.worth1000.com, and some authentic photos, as shown
in Fig. 14(a)-(b) and (c)-(e) respectively. The left column shows the test images, the two
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Fig. 12 Forgery detection results of Fig. 9(c): a salient regions extraction; b-d NLF estimates from all salient
regions and background in red, green and blue channels, respectively; (e) inconsistency metric of CB-Ri, and
candidate deviation evaluator η as indicated by the vertical axis on the right-side; f preliminary detection results; g
refined detection results based on [2]; and h detection result using the method of [22]
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middle columns show extracted salient regions and the corresponding CB-Ri and η values
respectively. The η values are compared with a given threshold 3 to identify splicing
manipulations and locate forged regions. The results are shown in the right-most column.
For the tested synthesized photos in (a) and (b), both inserted irregular objects are correctly
located as the η values are greater than 3. For most photos with moderate noise level and well-
distributed textures such as (c) and (d), all η values are below 3 and therefore correctly
identified as authentic. For low noise photos containing strong texture contents, however,
the high texture regions may sometimes be judged incorrectly since NLF estimation in these
regions is less reliable. In Fig. 14(e), for example, a high-texture region is incorrectly judged as
forgery. For good detection performance, the proposed method requires good saliency detec-
tion and segmentation algorithms. We expect that splicing detection accuracy can be improved
further when better techniques for saliency detection and segmentation become available.

6 Conclusion and Discussion

In this paper, we propose a scheme to estimate the noise level function (NLF) from a single
color image, and a method for detecting image splicing by revealing noise level inconsistency
in different regions of the test image. Although noise is assumed independent of signals in
many researches, it is often unrealistic. In actual imaging systems, photon noise is related to
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Fig. 13 Forgery detection results of Fig. 9(d): a salient regions extraction; b-d NLF estimates from all salient
regions and background in red, green and blue channels, respectively; e inconsistency metric of CB-Ri, and
candidate deviation evaluator η as indicated by the vertical axis on the right-side; f preliminary detection results; g
refined detection results based on [2]; and h detection result using the method of [22]
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brightness levels in a complicated way. Therefore, a radiance dependent noise model is used in
the present work. Following a definition of the noise level function, statistical samples of noise
are collected from image blocks. To deal with the problem of insufficient sample set, a model
is developed for the NLF based on the first-order Taylor expansion. According to this model,
the profile of NLF strongly depends on its corresponding camera response function (CRF). To
constrain the shape of NLF, we use an edge-based CRF estimator and integrate it into the
proposed estimation method within a Bayesian framework. NLF estimation is then applied to
image forensics, specifically splicing detection. Experimental results show effectiveness of the
NLF estimation and the image splicing detection methods.

In comparison with most state-of-the-art NLF estimation methods, the proposed scheme has
higher accuracy in data fitting. Besides, the proposed scheme avoids training of a large amount
of data, and optimizes parameters of NLF and CRF simultaneously in the Bayesian inference.
In image forensic applications, as far as we know, there is no existing method to explore
possible noise level inconsistency between any two blocks from different origins even if they
are taken with the same camera. The main contribution of this paper is to reveal this kind of
inconsistency and apply it to image splicing detection.
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